Quiz 1.

Sol" 1. D: Shinchan has the disease
T: Shinchan tests positive for the disease
We know that
$P(D)=0.01$ since the disease affects
1% of the populations
Ale, $P(T \mid D)=0.95, P\left(T^{C} \mid D^{C}\right)=0.95$

We want to find P (Shinchan has the disiase/Skinchan has tested pesitive for the disease) ie. $P(D \mid T)$.

- 1 mask

We apply Bayle mile.

$$
P(D \mid T)=\frac{P(T \mid D) \cdot P(D)}{P(T)}-1 \text { mark }
$$

The numesator is known. To find the denominator, we use the total probability law:

$$
\begin{aligned}
& P(T)=P(T \mid D) \cdot P(D)+P\left(T \mid D^{c}\right) \cdot P\left(D^{c}\right) \\
&-1 \text { mask }
\end{aligned}
$$

Thus, we have, $P(T \mid D) \cdot P(D)=0.95 \times 0.01$

$$
\begin{aligned}
& P(T)=0.95 \times 0.01+0.05 \times 0.99 \\
& \therefore P(D \mid T)=\frac{0.0095}{0.059}=0.161
\end{aligned}
$$

- 2 marks.

We can conclude that even though the test is reliable, there is only a 16% chance than Shinchan has covr10-19 given that he tested positive.

Sof"2. a) The sample space for this problem can be written as:

$$
\begin{aligned}
& \frac{\Omega}{B: \text { Boy }} \\
& G: \text { Girl }
\end{aligned}
$$

We need to find P (Brfh children are gits / Elder child is agirl) $=\frac{P(\text { Both girls, Elder child in girl) }}{P \text { (Elder child is a girl) }}$
(def" of conditional prob.).
$\therefore P($ Both are girls | Elderchild is a girl)

$$
=\frac{1 / 4}{1 / 2}=\frac{1}{2} . \quad 2 \text { marks. }
$$

b) The sample space Ω it the same for this problem as well.

The required prob is $P($ Both boys / Affect one is boy $)$

$$
\begin{aligned}
& =\frac{P(\text { Both boys, at least one is boy) }}{P \text { (Atfeast one is boy) }} \\
& =\frac{1 / 4}{3 / 4}=\frac{1}{3} . \quad 2 \text { masks. }
\end{aligned}
$$

1 mark - identifying sample space for a) \&b) 2 marks for each part done correctly.

Sol. Data: $40,70,50,100,90$
a) Five figure summary:

Minimum: 40
$\left(Q_{1}\right)$ First Quartile: 50

- 2 macks

Median : 70
$\left(Q_{3}\right)$ Third Quartile: 90
Maximum: 100
b) Interquatile range $=Q_{3}-Q_{1}=90.50=40$
(IQ) - 1 mask
c) Boxplot
 - 2 marks

O) dele the points lie within 1.5TQR of -the first and-unird quartiles, no print qualifies as an out lies.

- 1 mark
e) Atwerage $=70$
- 1 mark
f) Standard deviation $=25.4955^{-2}-2$ marks.
g) symmetric
- 1 mark

